Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots.

نویسندگان

  • Yuko Nakagawa
  • Takeshi Katagiri
  • Kazuo Shinozaki
  • Zhi Qi
  • Hitoshi Tatsumi
  • Takuya Furuichi
  • Akio Kishigami
  • Masahiro Sokabe
  • Itaru Kojima
  • Shusei Sato
  • Tomohiko Kato
  • Satoshi Tabata
  • Kazuko Iida
  • Asuka Terashima
  • Masataka Nakano
  • Mitsunobu Ikeda
  • Takuya Yamanaka
  • Hidetoshi Iida
چکیده

Plants can sense and respond to mechanical stimuli, like animals. An early mechanism of mechanosensing and response is speculated to be governed by as-yet-unidentified sensory complexes containing a Ca(2+)-permeable, stretch-activated (SA) channel. However, the components or regulators of such complexes are poorly understood at the molecular level in plants. Here, we report the molecular identification of a plasma membrane protein (designated Mca1) that correlates Ca(2+) influx with mechanosensing in Arabidopsis thaliana. MCA1 cDNA was cloned by the functional complementation of lethality of a yeast mid1 mutant lacking a putative Ca(2+)-permeable SA channel component. Mca1 was localized to the yeast plasma membrane as an integral membrane protein and mediated Ca(2+) influx. Mca1 also increased [Ca(2+)](cyt) upon plasma membrane distortion in Arabidopsis. The growth of MCA1-overexpressing plants was impaired in a high-calcium but not a low-calcium medium. The primary roots of mca1-null plants failed to penetrate a harder agar medium from a softer one. These observations demonstrate that Mca1 plays a crucial role in a Ca(2+)-permeable SA channel system that leads to mechanosensing in Arabidopsis. We anticipate our findings to be a starting point for a deeper understanding of the molecular mechanisms of mechanotransduction in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Role of the AtClC genes in regulation of root elongation in Arabidopsis

The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...

متن کامل

Heterotrimeric G Protein-Regulated Ca2+ Influx and PIN2 Asymmetric Distribution Are Involved in Arabidopsis thaliana Roots' Avoidance Response to Extracellular ATP

Extracellular ATP (eATP) has been reported to be involved in plant growth as a primary messenger in the apoplast. Here, roots of Arabidopsis thaliana seedlings growing in jointed medium bent upon contact with ATP-containing medium to keep away from eATP, showing a marked avoidance response. Roots responded similarly to ADP and bz-ATP but did not respond to AMP and GTP. The eATP avoidance respon...

متن کامل

Paxillus involutus-Facilitated Cd2+ Influx through Plasma Membrane Ca2+-Permeable Channels Is Stimulated by H2O2 and H+-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress

Using a Non-invasive Micro-test Technique, flux profiles of Cd2+, Ca2+, and H+ were investigated in axenically grown cultures of two strains of Paxillus involutus (MAJ and NAU), ectomycorrhizae formed by these fungi with the woody Cd2+-hyperaccumulator, Populus × canescens, and non-mycorrhizal (NM) roots. The influx of Cd2+ increased in fungal mycelia, NM and ectomycorrhizal (EM) roots upon a 4...

متن کامل

A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 9  شماره 

صفحات  -

تاریخ انتشار 2007